Home
Class 13
MATHS
lim(x rarr0)((4^(*)-1)^(4))/(sin((x)/(rh...

lim_(x rarr0)((4^(*)-1)^(4))/(sin((x)/(rho))ln(1+(x^(2))/(3)))" is equal "10

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((4^(x)-1)^(3))/(sin((x)/(p))ln(1+(x^(2))/(3))) is equal to

lim_(x rarr0)((1+x)^(4)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)

The value of lim_(x rarr0)((4^(x)-1)^(3))/(sin backslash(x)/(4)*log(1+(x^(2))/(3))) equals

lim_(x rarr0)((e^(x)-1)log(1+x))/(sin x)

lim_(x rarr0)((log(1+x^(3)))/(sin^(3)x)

lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x rarr0)(sin(x/4))/(x)

lim_(x rarr0)(sin(x)/(4))/(x)

lim_(x rarr0)sin^(-1)((sin x)/(x))