Home
Class 11
MATHS
" (iii) "f(x)=sqrt(x-1)" [NCERT] "...

" (iii) "f(x)=sqrt(x-1)" [NCERT] "

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sqrt(x^(2)-x+1)

Find the domain of each of the following functions given by f(x)=(1)/(sqrt(x-|x|)) (ii) f(x)=(1)/(sqrt(x+|x|)) (iii) f(x)=(1)/(sqrt(x-[x]))( iv )f(x)=(1)/(sqrt(x+[x]))

Find the domain of each of the following functions given by f(x)=1/(sqrt(x-|x|)) (ii) f(x)=1/(sqrt(x+|x|)) (iii) f(x)=1/(sqrt(x-[x])) (iv) f(x)=1/(sqrt(x+[x]))

f(x)={[x]+sqrt(x),x =1}

If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

The domain of f(x)=(1)/(sqrt(|x|-x)) is

The domain of f(x)=(1)/(sqrt(|x|-x)) is

If f(x)=x(sqrt(x)-sqrt(x+1)) then f(x) is:

If f(x)=sqrt(x+2sqrt(x))," then "f'(1)=

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?