Home
Class 11
MATHS
" 10."lim(x rarr2)(x-2)/(log(a)(x-1))=...

" 10."lim_(x rarr2)(x-2)/(log_(a)(x-1))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr2)(x-2)/(log_(a)(x-1))

Evaluate lim_(x rarr2)(x-2)/(log_(a)(x-1))

lim_(x rarr2)(log(2x-3))/(2(x-2))

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

lim_(x rarr0)sinx/log_(e)(1+x)^(1/2)

lim_(x rarr0)(log(1+x))/(x)=1

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

The limit lim_(x rarr2)(log_(e)(x-2))/(log_(6)(e^(x)-e^(2))) equals

STATEMENT-1: lim_(x rarr oo)(log[x])/(sqrt(([x])/(sec^(2)-1)))=0 STATEMENT-2: lim_(x rarr0)(sqrt(sec^(2)-1))/(x) does not exist.STATEMENT-3: lim_(x rarr2)(x-1)^((1)/(x-2))=1

lim_(x rarr0)(sin x)/(log_(e)(1+x)^((1)/(2)))