Home
Class 10
MATHS
B=|[2sqrt(3)9],[2quad 3sqrt(3)]|...

B=|[2sqrt(3)9],[2quad 3sqrt(3)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of the following determinants. B=|(2sqrt3,9),(2,3sqrt3)|

Find the value of the determinants: B=|{:(2sqrt3,9),(2,3sqrt3):}|

Find the value of the determinants: B=|{:(2sqrt3,9),(2,3sqrt3):}|

If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5) , then a^(2)+b^(2)-4a-6b-3 is equal to

Let A={:[(sqrt(3),-1),(2+sqrt(3),1-sqrt(3))]:},B={:[(-sqrt(3),2),(2-sqrt(3),1+sqrt(3))]:} Find A+B.

Let A={:[(sqrt(3),-1),(2+sqrt(3),a-sqrt(3))]:},B={:[(-sqrt(3),2),(2-sqrt(3),1+sqrt(3))]:} Find A+B.

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), find the value of a^(2)+ab+b^(2)