Home
Class 11
MATHS
Prove that: 2sin^2(3pi/4)+2cos^2(pi/4)+2...

Prove that: `2sin^2(3pi/4)+2cos^2(pi/4)+2sec^2(pi/3)=10`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 2sin^2 (3pi/4)+2cos^2(pi/4)+s e c^2pi/3=10

Prove that: 2 sin^2(3pi)/4+2cos^2pi/4+2s e c^2pi/3=10

Prove that sin^2(pi/4) + cos^2(pi/4) +cosec^2(pi/6) = 5

Prove that 2sin^2(pi/2) + cos^2(pi/3) + tan ^2(pi/4) = 13/4

Prove that sin^2(pi/4) + cos^2(pi/6) - tan^2(pi/4) = 1/4

Prove that: (a) 2sin^(2)(pi/2) + "cosec"^(2)((7pi)/2) cos^(2)(pi/3)=(3/2)^2 (b) 2sin^(2)((3pi)/4)+2cos^(2)(pi/4)+2sec^(2)(pi/3)=10

Prove that: 2sin^(2)(3(pi)/(4))+2cos^(2)((pi)/(4))+2sec^(2)((pi)/(3))=10

Prove that: 2sin^2frac (3pi)(4)+2cos^2frac(pi)(4)+2sec^2frac (pi)(3)=10

Prove that sin^2(pi/6)+cos^2(pi/3)-tan^2(pi/4)=-1/2

Prove that: sin^2(pi/6)+cos^2(pi/3)-t a n^2pi/4=-1/2