Home
Class 12
MATHS
For any angle theta the expression (2cos...

For any angle `theta` the expression `(2cos8theta+1)/(2costheta+1)` is eqaul to

Promotional Banner

Similar Questions

Explore conceptually related problems

For any angle theta, the expression (2cos 8 theta +1)/(2 cos theta +1) is equal to-

for any angle theta the expression (2 cos 8 theta + 1)/( 2 cos theta +1) is equal to

sqrt(1-cos^2theta)/(costheta) = ……………..

For any real value of theta!=pi the value of the expression y=(cos^(2)theta-1)/(cos^(2)theta+cos theta)

sin^4 theta=3/8-1/2cos2theta+1/8cos 4theta

For any acute angle theta , prove that: (i) sin^(2) theta + cos^(2) theta =1

int(costheta-cos2theta)/(1-cos theta)d theta=

4costheta cos 2theta cos3theta - 2cos 4theta=1

For any acute angle theta; Prove (i) 'tan theta = sintheta/costheta (ii) cot theta =cos theta/sintheta