Home
Class 11
MATHS
Prove that: (cos(pi+x)cos(-x))/(sin(pi-...

Prove that: `(cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that: (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi)/(2)+x)=cot^(2)x

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos((pi)/(2)+x))=cot^(2)x

Prove that: (a) (cos(pi+x) cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x (b) cos((3pi)/2 + x)cos(2pi+x){cot ((3pi)/2-x)+cot(2pi+x)}=1

Prove the following: (cos(pi+x)cos(-x))/(sin (pi-x) cos(pi/2+x))=cot^2x

Prove the following: (frac(cos(pi+x)cos(pi-x))(sin(pi-x)cos(pi/2+x)))=cot^2x

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x