Home
Class 12
MATHS
int Tan^(-1)((3x-x^(3))/(1-3x^(2)))dx" o...

int Tan^(-1)((3x-x^(3))/(1-3x^(2)))dx" on "I sub R backslash{-

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integerals. int tan ^(-1)((3x -x^(3))/(1-3x^(2)))dx on I sub R \\ {-(1)/(sqrt3), (1)/(sqrt3)}.

int_(0)^(1)tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

Evaluate int tan ^(-1)((2x)/(1-x^(2)))dx on I sub R \\{-1, 1}.

Evaluate the following integrals: int tan^(-1)((3x-x^3)/(1-3x^2))dx

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

Evaluate the integerals. int (1+(2)/3x-(3)/(x^2)) dx "on " I sub R\\ {0}

Evaluate the integerals. int (e ^(Tan ^(-1)x))/(1+x^(2))dx on I sub (0,oo).

Answer the equation: int tan^(-1)((3x-x^(3))/(1-3x^(2)))dx