Home
Class 12
MATHS
Let f (n)=(4n + sqrt(4n ^(2) +1))/( sqrt...

Let `f (n)=(4n + sqrt(4n ^(2) +1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N` then the remainder when `f (1) + f (2) + f (3) + ..... + f (60)` is divided by 9 is.

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1)) . Then ((Sigma_(k=1)^(40)f(k))/(100)) is equal to

For any positive n, let f(n)=(4n+sqrt(4n^(2)-1))/(sqrt(2n+1)+sqrt(2n-1)) . Then ((Sigma_(k=1)^(40)f(k))/(100)) is equal to

Given f(1)=2 and f(n+1)=(f(n)-1)/(f(n)+1)AA n in N then

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.

Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt 1 , then the value of f^(2) - f + I * f - I . Is

If f(1)=1, f(n+1)=2f(n)+1, n ge1 , then f(n) is

If x=(2+sqrt(3))^(n),n in N and f=x-[x] then (f^(2))/(1-f)

f (1) = 1, n> = 1f (n + 1) = 2f (n) +1 then f (n) =