Home
Class 10
MATHS
If a^(2)/(b + c) = b^(2)/(c +a) = c^(2)/...

If `a^(2)/(b + c) = b^(2)/(c +a) = c^(2)/(a + b) = 1`, then show that ` 1/(1+a) + 1/(1 + b) + 1/(1+c) = 1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^2/(b+c)=b^2/(a+c)=c^2/(a+b)=1 , then show that 1/(1+a)+1/(1+b)+1/(1+c)=1 .

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (a)/(1+a) + (b)/(1+b) + (c )/(1+c) = ?

If a^2/(b+c)=b^2/(c+a)=c^2/(a+b)=1 , show that 1/(1+a)+1/(1+b)+1/(1+c)=1