Home
Class 12
MATHS
" (6) Show that "sin^(-1)(2x sqrt(1-x^(2...

" (6) Show that "sin^(-1)(2x sqrt(1-x^(2)))=-2 pi+2cos^(-1)xquad " if "-1<=x<=-(1)/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/sqrt2lexle1

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that (i) sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1

Show that sin^-1 x+cos^-1 x=pi/2 .

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is

Prove that: sin^(-1){(sqrt(1+x)+sqrt(1-x))/2}=pi/4+(cos^(-1)x)/2,""0 < x < 1