Home
Class 12
MATHS
Find the square root of (m^(n^(2))n^(m^(...

Find the square root of `(m^(n^(2))n^(m^(2))a^((m+n)))/((m+n)^((m+n)^(2)` (i) `(m^n)(n^m)a^((m+n)/2)` (ii) `((m^(n^2))(n^(m^2))a^((m+n)/2))/(m+n)^(((m+n)^2)/2)` (iii) `(m^n)(n^m)a^(sqrt(m+n))/(m+n)^(((m+n)))` (iv)none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the squre root of (m^(n^(2)) n^(m^(2)) a^((m +n)))/((m + n)^((m +n)^(2)))

m^(3)-n^(3)-m(m^(2)-n^(2))+n(m-n)^(2)

The value of (m+n)^2+(m-n)^2 is

Simplify : (m^2-n^2)/((m+n)^2)xx(m^2+mn+n^2)/(m^3-n^3)

sqrt(m^(2)n^(2))times root(6)(m^(2)n^(2))times root(3)(m^(2)n^(2))

lim_(x rarr a)(x^(m)-a^(m))/(x^(n)-a^(n))=((m)/(n))a^(m-n) if m>n

The value of (m+n)^2+(m-n)^2 is:

|[(m+n)^(2), l^(2), mn], [(n+l)^(2), m^(2), ln], [(l+m)^(2), n^(2), lm]| =(l^(2) +m^(2) +n^(2))(l-m)(m-n)(n-l)(l+m+n)

lim_(x rarr0)((2^(m)+x)^((1)/(m))-(2^(n)+x)^((1)/(n)))/(x) is equal to (1)/(m2^(m))-(1)/(n2^(n)) (b) (1)/(m2^(m))+(1)/(n2^(n))(1)/(m2^(-m))-(1)/(n2^(-n))( d) (1)/(m2^(-m))+(1)/(n2^(-n))