Home
Class 11
MATHS
" 8.Find the value of "Lt(x rarr1)(e^(3+...

" 8.Find the value of "Lt_(x rarr1)(e^(3+1)-e^(3))/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(x rarr oo)(x^(3))/(e^(x))

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

The value of lim_(x rarr 0) ((e^(x)-1)/x)

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)

Evaluate : lim_(x rarr 0) (e^(3x)-e^(2x))/x .

[" If "lim_(x rarr0)(1(x))/(x^(2))=3" and "lim_(x rarr0)(g(x))/(1-cos2x)=(1)/(4)," then the value of "lim_(x rarr0)(1+f(x))^((1)/(9(x)))" is equal to "],[[" (A) "e^((3)/(2))," (6) "],[" (B) ",6],[" (C) "e^(24)," e "],[" (D) "," e "]]

The value of Lt_(x->0)((1+x)^((1)/(x))-e)/(x)=

Evaluate Lt_(x to0)((e^(3+x)-e^3)/x)

Evaluate: lim_(x rarr0)(e^(x)-e^(-x)-2x)/(x^(3))

Lt_(x rarr0)(e^(x)-1)/(sqrt(4+x)-2)=