Home
Class 8
MATHS
" If the curves "(x^(2))/(a^(2))+(y^(2))...

" If the curves "(x^(2))/(a^(2))+(y^(2))/(b^(2))=1" and "(x^(2))/(l^(2))-(y^(2))/(m^(2))=1" cut each other orthogonally then ......"

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves (x^(2))/(l^(2))+(y^(2))/(m^(2))=1 and (x^(2))/(64)+(y^(2))/(25)=1 cut each other orthogonally then l^(2)-m^(2)

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then

Prove that the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(x^(2))/(a^(12))+(y^(2))/(b^(2))=1 intersect orthogonally if a^(2)-a^(2)=b^(2)-b^(2)

If the curves x^2/a^2+y^2/b^2=1 and x^2/l^2-y^2/m^2=1 cut each other orthagonally, then

The curve x^(2)-y^(2)=5 and (x^(2))/(18)+(y^(2))/(8)=1 cut each other at any common point at an angle-

Find the condition for the curves (x^(2))/(a^(2))-(y^(2))/(b^(2)) = 1 and xy = c^(2) to intersect orthogonally.

If the curves x^2/a^2+y^2/b^2=1 and x^2/25+y^2/16=1 cut each other orthagonally, then a^2-b^2 =