Home
Class 12
MATHS
Let f:[-oo,0)->(1,oo) be defined as f(x)...

Let f:[-oo,0)->(1,oo) be defined as `f(x)=(1+sqrt(-x))-(sqrt(-x)-x)` then f(x) is (A) injective but not surjective (B) injective as well as surjective (C) neither injective nor surjective (D) surjective nut not injective

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f : R->R & f(x)=x/(1+|x|) Then f(x) is (1) injective but not surjective (2) surjective but not injective (3) injective as well as surjective (4) neither injective nor surjective

The function f: R->R , f(x)=x^2 is (a) injective but not surjective (b) surjective but not injective (c) injective as well as surjective (d) neither injective nor surjective

The function f: R->R , f(x)=x^2 is (a) injective but not surjective (b) surjective but not injective (c) injective as well as surjective (d) neither injective nor surjective

Let A={x:xepsilonR-{1}}f is defined from ArarrR as f(x)=(2x)/(x-1) then f(x) is (a) Surjective but nor injective (b) injective but nor surjective (c) neither injective surjective (d) injective

Let A={x:xepsilonR-{1}}f is defined from ArarrR as f(x)=(2x)/(x-1) then f(x) is (a) Surjective but nor injective (b) injective but nor surjective (c) neither injective surjective (d) injective

Let A={x:x varepsilon R-}f is defined from A rarr R as f(x)=(2x)/(x-1) then f(x) is (a) Surjective but nor injective (b) injective but nor surjective (c) neither injective surjective (d) injective

A function f:(0,oo)rarr[0,oo] is given by f(x)=|1-(1)/(x)|, then f(x) is (A) Injective but not surjective (B) Injective and bijective (C) Injective only (D) Surjective only

A function f:(0,oo) -> [0,oo] is given by f(x)=|1-1/x| , then f(x) is (A) Injective but not surjective (B) Injective and bijective (C) Injective only (D) Surjective only

Let A}x:-1<=x<=1} and f:A rarr such that f(x)=x|x|, then f is a bijection (b) injective but not surjective Surjective but not injective (d) neither injective nor surjective

Let A{x :-1lt=xlt=1}a n df: Avec such that f(x)=x|x|, then f is (a) bijection (b) injective but not surjective (c)Surjective but not injective (d) neither injective nor surjective