Home
Class 12
MATHS
" 5.If "y=sin^(2)x" ,then prove that "(d...

" 5.If "y=sin^(2)x" ,then prove that "(dy)/(dx)=sin2x

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If sin y = x sin (a + y), then prove that (dy)/(dx) = (sin^(2) (a + y))/(sin a) .

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If siny=x sin(a+y) , prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)) .

If y="sin"(logx), then prove that (x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0