Home
Class 11
MATHS
[" Given "y=f(u)" and "u=g(x)" Find "(dy...

[" Given "y=f(u)" and "u=g(x)" Find "(dy)/(dx)],[" 36."y=2u^(3),u=8x-1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Given y=f(u) and u=g(x) Find (dy)/(dx) if y=2u^(3),u=8x-1

Given y = f(u) and u = g(x). Find (dy)/(dx) . y = sin u, u = 3x + 1

U=x^y find (dU)/dx

Find dy/dx if : y=9u^(2),u=1-3/2x^(2)

If y=2+sqrtu and u=x^(3)+1 , then (dy)/(dx)=

If y=1/4u^(4) " and " u=2/3x^(3)+5, " then " (dy)/(dx) is

Find (dy)/(du) , when y=(u^(3)+3^(u))"cosec"u

Find (dy)/(dx) when y=u^(3) and u=sqrt(6x^(2)-2x+1)

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is