Home
Class 10
MATHS
"If" alpha , beta "are the roots of" x^(...

`"If" alpha , beta "are the roots of" x^(2) - px + q = 0 "then" alpha^(3) + beta^(3) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha , beta are roots x^(2) + px + q = 0 then value of alpha^(3) + beta^(3) is

If alpha , beta are the roots of the equation x^(2)-px+q=0 , then (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is equal to :

If alpha , beta are the roots of the equation x^(2)-px+q=0 , then (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is equal to :

If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=

If alpha, beta are the roots of x^(2)-px+q=0 then (alpha+beta)x-(alpha^(2)+beta^(2))(x^(2))/(2)+(alpha^(3)+beta^(3))(x^(3))/(3)-….oo=

If alpha, beta, gamma are the roots of x^3 + px + q = 0 , then alpha beta gamma = ___________ .

If alpha, beta, gamma are roots of x^(3) - px^(2) + qx - r = 0 then sum alpha^(2) (beta + gamma) =