Home
Class 11
MATHS
Prove that: sin^2 24^0-sin^2 6^0=(sqrt(...

Prove that: `sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that sin18^@=(sqrt5-1)/4 prove that sin^2 24^@-sin^2 6^@=(sqrt5-1)/8

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8

Prove that: sin^2 42^0-cos^2 78^0=(sqrt(5)+1)/8

Prove that : sin^2 72^@- sin^2 60^@= (sqrt5-1)/8 .

Prove that : sin^2 24^@ -sin^2 6^@= 1/8 (sqrt5-1) .

Prove that sin^(2)24^(@)-sin^(2)6^(@)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Prove that : sin^2(72^@) - sin^2 (60^@) = (sqrt5 - 1)/8

Prove that: sin20^0sin40^0sin80^0=(sqrt(3))/8