Home
Class 11
MATHS
A function f : RR rarr RR is such that f...

A function `f : RR rarr RR` is such that `f(1) = 3 and f'(1) = 6.` Then `lim_(x rarr 0)[f(1+x)/f(1)]^(1//x) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

Let f:R rarr R be such that f(1)=3andf'(1)=6. Then lim_(x rarr0)((f(1+x))/(f(1)))^(1/x)=(a)1( b) e^((1)/(2))(c)e^(2) (d) e^(3)

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

If f(x) be a differentiable function for all positive numbers such that f(x.y)=f(x)+f(y) and f(e)=1 then lim_(x rarr0)(f(x+1))/(2x)

If f'(2)=6 and f'(1)=4 ,then lim_(x rarr0)(f(x^(2)+2x+2)-f(2))/(f(1+x-x^(2))-f(1)) is equal to ?

-If f(x) is a quadratic expression such that f(-2)=f(2)=0 and f(1)=6 then lim_(x rarr0)(sqrt(f(x))-2sqrt(2))/(ln(cos x)) is equal to

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to

If f(x)=(1)/(|x|) prove that lim_(x rarr0)f(x) does not