Home
Class 11
MATHS
Suppose p,q,r,s in N and p ge q ge r 5^(...

Suppose `p,q,r,s in N` and `p ge q ge r` `5^(log_5(2^(p)))+7^(log_7(2^(q)))+1 1^(log_11(2^(r)))=2^s` then (a) q=p-1 (b) r=p-1

Promotional Banner

Similar Questions

Explore conceptually related problems

10^(log_p(log_q(log_r(x))))=1 and log_q(log_r(log_p(x)))=0 then 'p' equals

10^(log_(p)(log_(q)(log_(r)x)))=1 and log_(q)(log_(r)(log_(p)x))=0 then p equals to:

10^(log_(p)(log_(q)(log_(r)(x))))=1 and log_(q)(log_(r)(log_(p)(x)))=0 then 'p' equals

10^(log_p(log_q(log_r(x))))=1 and log_q(log_r(log_p(x)))=0 , then 'p' is equals

If p, q, r, s are in G.P. then show that (q -r )^(2) + ( r -p) ^(2) + ( s-q) ^(2) = ( p -s) ^(2)

if P,q, r, s in R such that p r= 2 ( q+ s) then

If p,q,r,s are natural numbers such that p>=q>=r If 2^(p)+2^(q)+2^(r)=2^(s) then

If log_p(q)+log_q(r)+log_r(p) vanishes where p,q,r are positive reals different than unity then the value of (log_p(q))^3+(log_q(r))^3+(log_r(p))^3

.prove that (a^(p+q))^(2)(a^(q+r))^(2)(a^(r+p))^(2)/((a^(p)*a^(q)*a^(r))^(4))=1

a,b,c (all positive) are the p th, q th and r th terms of a geometric progression, then |{:(log _(e) a, p, 1), ( log _(e) b ,q, 1), ( log _(e) c, r,1):}| :a)pqr b)0 c) p + q + r d) pq + qr + rp