Home
Class 11
MATHS
If sintheta=1/2 then theta=...

If `sintheta=1/2` then `theta=`

A

`npi+(-1)^npi/6, n in Z`

B

`npi+(-1)^npi/3, n in Z`

C

`npipmpi/6, n in Z`

D

`npipmpi/3, n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin \theta = \frac{1}{2} \), we will follow these steps: ### Step 1: Identify the angle The sine function equals \( \frac{1}{2} \) at specific angles. We know from trigonometric values that: \[ \sin 30^\circ = \frac{1}{2} \] ### Step 2: Find all possible angles The sine function is positive in the first and second quadrants. Therefore, the general solutions for \( \theta \) can be expressed as: \[ \theta = 30^\circ + 360^\circ n \quad \text{(for the first quadrant)} \] \[ \theta = 180^\circ - 30^\circ + 360^\circ n = 150^\circ + 360^\circ n \quad \text{(for the second quadrant)} \] where \( n \) is any integer. ### Step 3: Write the final solution Thus, the complete set of solutions for \( \theta \) is: \[ \theta = 30^\circ + 360^\circ n \quad \text{or} \quad \theta = 150^\circ + 360^\circ n \quad \text{for } n \in \mathbb{Z} \] ### Summary of the solution: - The angles where \( \sin \theta = \frac{1}{2} \) are \( 30^\circ \) and \( 150^\circ \), with periodicity of \( 360^\circ \). ---

To solve the equation \( \sin \theta = \frac{1}{2} \), we will follow these steps: ### Step 1: Identify the angle The sine function equals \( \frac{1}{2} \) at specific angles. We know from trigonometric values that: \[ \sin 30^\circ = \frac{1}{2} \] ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If sintheta=-1/2 and tantheta=1/sqrt(3) then theta is equal to,

If cos^2theta-sintheta=1/4 then sintheta=?

If sintheta= - 1/2 and tan theta = 1/sqrt(3) then the most general values of theta equal to (A) 2npi+pi/6 (B) 2npi=(5pi)/6 (C) 2npi+(7pi)/6 (D) none of these

If "cosec"theta+sintheta=(5)/(2) , then the value of ("cosec"theta-sintheta) is :

If sintheta+costheta=1/2 then find the value of 16(sin2theta+cos4theta+sin6theta)

If sintheta=(1)/(2) , then find the value of sin2theta

Show that there is no complex number such that |z|le1/2 and z^(n)sin theta_(0)+z^(n-1)sintheta_(2)+....+zsintheta_(n-1)+ sintheta_(n)=2 where theta,theta_(1),theta_(2),……,theta_(n-1), theta_(n) are reals and n in Z^(+) .

If : cos theta+sintheta=1, "then" : cos theta-sintheta

Find general solutions of the following equations: a) sintheta=1/2 , b) cos(3theta)/2=0 , c) tan(3theta)/2=0 , d) cos^(2)2theta=1 , e) sqrt(3)sec2theta=2 , f) "cosec"(theta/2)=-1

If sintheta=(1)/(3) ,then find the value of sintheta*cos^(2)theta+"cosec"theta .