Home
Class 12
MATHS
In a DeltaABC, Sin A /SinC = sin(A-B)/ s...

In a `DeltaABC`, `Sin A /SinC = sin(A-B)/ sin(B - C)` , then `a^2, b^2, c^2` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a DeltaABC, sin A: sin C = sin (A - B): sin (B-C), then a^(2), b^(2), c^(2) are in

If in a DeltaABC, sin A: sin C = sin (A - B): sin (B-C), then a^(2), b^(2), c^(2) are in

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In a DeltaABC,sinA/sinC=sin(A-B)/sin(B-C) then

If sinA : sinC = sin(A-B): sin(B-C) prove that a^2,b^2,c^2 are in A.P.

In DetlaABC, if (SinA)/(SinC)=(Sin(A-B))/(Sin(B-C)) then a^(2),b^(2)c^(2) are in

In DeltaABC , (sinA)(sinC) = (sin(A-B))/(sin(B-C)) , prove that a^(2),b^(2),c^(2) are in A.P.

If in a A B C ,(sinA)/(sinC)=(sin(A-B))/(sin(B-C) , prove that a^2,b^2,c^2 are in AdotPdot

If (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , prove that a^(2), b^(2), c^(2) are in A.P.