Home
Class 11
MATHS
[" 18) If "a(1),a(2),a(3),.....a" are "n...

[" 18) If "a_(1),a_(2),a_(3),.....a" are "n" distinct odd numbers not divisible by any prime greater than "5" ,"],[" then "(1)/(a_(1))+(1)/(a_(2))+......+(1)/(a_(n))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),......a_(n), are 'n', distinct odd natural numbers,not divisible by any prime number greater than 5, then (1)/(a_(1))+(1)/(a_(2))+(1)/(a_(3))+......+(1)/(a_(n)) is less than (a)(15)/(8)(b)(17)/(8)(c)(19)/(8)(d)(21)/(8)

If a_(1),a_(2),a_(3),......,a_(n+1) be (n+1) different prime numbers,then the number of different factors (other than 1) of a_(1)^(m)*a_(2)*a_(3)...a_(n+1), is

If a_(1),a_(2),a_(3),...a_(n) are positive real numbers whose product is a fixed number c, then the minimum value of a_(1)+a_(2)+....+a_(n-1)+2a_(n) is

Statement-1: 1^(3)+3^(3)+5^(3)+7^(3)+...+(2n-1)^(3)ltn^(4),n in N Statement-2: If a_(1),a_(2),a_(3),…,a_(n) are n distinct positive real numbers and mgt1 , then (a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(b))/(n))^(m)

Statement-1: 1^(3)+3^(3)+5^(3)+7^(3)+...+(2n-1)^(3)ltn^(4),n in N Statement-2: If a_(1),a_(2),a_(3),…,a_(n) are n distinct positive real numbers and mgt1 , then (a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(b))/(n))^(m)

If a_(1), a_(2), a_(3) ,…., a_(n) are the terms of arithmatic progression then prove that (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) + (1)/(a_(3)a_(4)) + ….+ (1)/(a_(n-1) a_(n)) = (n-1)/(a_(1)a_(n))

If a_(1),a_(2),a_(3),...a_(n) are in A.P. with common difference d, then tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+,....+tan^(-1)((d)/(1+a_(n-1)a_(n)))]=

If a_(1),a_(2),a_(3),....,a_(n) is an A.P. with common difference d, then tan[Tan^(-1)(d/(1+a_(1)a_(2)))+Tan^(-1)(d/(1+a_(2)a_(3)))+...Tan^(-1)(d/(1+a_(n-1)a_(n)))=