Home
Class 12
MATHS
underset( x rarroo)("lim") x {tan^(-1) (...

`underset( x rarroo)("lim") x {tan^(-1) ((x+1)/( x+2))-pi //4}= `

Promotional Banner

Similar Questions

Explore conceptually related problems

underset( x rarroo ) ("lim") sec^(-1) ((x)/( x+1)) =

Evaluate: underset(x rarr oo)(lim) (x^((1)/(2)) -2 tan^(-1) ((1)/(x)))/(((1)/(x)))

lim_ (x rarr oo) x {tan ^ (- 1) ((x + 1) / (x + 2)) - (pi) / (4)} =

Evaluate underset( x rarr oo) ( "lim") ( pi - 2 tan^(-1) x ) ln x

underset( x rarr pi //2) ("Lim") ( 2 ^(cos x) - 1)/( x ( x-pi //2))= is

underset(x to 1)lim (1-x) tan(pix//2) =

underset( x rarr 1) ( "Lim") ( tan "" ( pi x)/( 4))^(tan""( pix)/( 2))

lim_ (x rarr0) (1) / (x) [tan ^ (- 1) ((x + 1) / (2x + 1)) - (pi) / (4)] =?

Evaluate: lim_(x rarr oo)x(tan^(-1)((x+1)/(x+4))-(pi)/(4))

underset(x to 1)lim (tan^(2)pix)/(1+sec pi x)=