Home
Class 12
MATHS
Prove that |[0,cosalpha,-sinalpha],[sina...

Prove that `|[0,cosalpha,-sinalpha],[sinalpha,0,cosalpha],[cosalpha,sinalpha,0]|^2=|[1,x,x],[x,1,-x],[x,-x,1]|` where `x=sinalphacosalpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that, |{:(0,cosalpha,-sinalpha),(sinalpha,0,cosalpha),(cosalpha,sinalpha,0):}|^2=|{:(" "1,x,-x),(" "x,1," "x),(-x,x," "1):}| where x= sinalpha cosalpha

Evaluate: =|[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

Evaluate triangle = |[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A = {:[(cosalpha, sinalpha),(-sinalpha, cosalpha)] , then find A^2