Home
Class 12
MATHS
int(0)^(lambda) (ydy)/(sqrt(y+lambda)) ...

` int_(0)^(lambda) (ydy)/(sqrt(y+lambda))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(lambda rarr0)(int_(0)^(1)(1+x)^(lambda)dx)^((1)/(lambda)) is equal to

lim_(lamda to 0)(int_(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal to

lim_(lamda to 0)(int_(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal to (a) 2 In 2 " " (b) (4)/(e) (c) In(4)/(e) " " (d) 4

A= [{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

A= [{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

int_ (0) ^ (1) (xdx) / (sqrt (x + lambda) + sqrt (x + mu)), lambda! = mu

If lambda is a root of x^(2) + 3x + 1 = 0 then tan^(-1) lambda+ tan^(-1) (1/lambda) is equal to

If int_(0)^(1)cot^(-1)(1-x+x^(2))dx=lambda int_(0)^(1)tan^(-1)xdx, then lambda is equal to 1( b) 2(c)3(d)4