Home
Class 12
MATHS
यदि x=cos2t और y=sin^(2)t है तो (d^(2)y...

यदि `x=cos2t` और `y=sin^(2)t` है तो `(d^(2)y)/(dx^(2))` कितने के बराबर है ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos(2t) and y=sin^(2)t then what is (d^(2)y)/(dx^(2))

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

If x = a +1/a and y=a-1/a then sqrt(x^4+ y^4-2x^2y^2) is equal to : यदि x = a +1/a और y=a-1/a है, तो sqrt(x^4+ y^4-2x^2y^2) का मान किसके बराबर होगा?

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is