Home
Class 12
MATHS
[[2costheta,1,0],[1,2costheta,1],[0,1,2c...

`[[2costheta,1,0],[1,2costheta,1],[0,1,2costheta]]=(sin4theta)/sintheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

|{:(2costheta,1,0),(1,2costheta,1),(0,1,2costheta):}|=(sin4theta)/(sintheta)[thetanen pi]

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

costheta[(costheta, sintheta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)] is equal to (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

if costheta_1+costheta_2+costheta_3=3 then sin^2theta_1+sin^4theta_2+sin^6theta_3=

(sintheta)/(1+costheta) is equal to (a) (1+costheta)/(sintheta) (b) (1-costheta)/(costheta) (c) (1-costheta)/(sintheta) (d) (1-sintheta)/(costheta)