Home
Class 12
MATHS
If f(x)=logex and g(x)=e^x, prove that f...

If `f(x)=log_ex and g(x)=e^x`, prove that `f{g(x)}=g{f(x)}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x) = log x and g(x) = e^x then fog(x) is :

If f (x) = log x and g (x) = e^X , then (fog) (x) is :

Given f(x) =log_(10) x and g(x) = e^(piix) . phi (x) =|{:(f(x).g(x),(f(x))^(g(x)),1),(f(x^(2)).g(x^(2)),(f(x^(2)))^(g(x^(2))),0),(f(x^(3)).g(x^(3)),(f(x^(3)))^(g(x^(3))),1):}| the value of phi (10), is

Given (f(x) =log_(10) x and g(x) = e^(piix) . phi (x) =|{:(f(x).g(x),(f(x))^(g(x)),1),(f(x^(2)).g(x^(2)),(f(x^(2)))^(g(x^(2))),0),(f(x^(3)).g(x^(3)),(f(x^(3)))^(g(x^(3))),1):}| the value of phi (10), is

Given f(x)=log_(10)x and g(x)=e^(piix) , if theta(x)=|(f(x)g(x),[ f(x)]^(g(x)),1),(f(x^(2))g(x^(2)),[f(x^(2))]^(g(x^(2))),0),(f(x^(3))g(x^(3)),[f(x^(3))]^(g(x^(3))),1)| , then the value of theta(10) is

Given (f(x) =log_(10) x and g(x) = e^(piix) . phi (x) =|{:(f(x).g(x),(f(x))^(g(x)),1),(f(x^(2)).g(x^(2)),(f(x^(2)))^(g(x^(2))),0),(f(x^(3)).g(x^(3)),(f(x^(3)))^(g(x^(3))),1):}| the value of phi (10), is

If f(x) = x log x and g(x) = 10^(x) , then g(f(2)) =

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).