Home
Class 12
MATHS
If x and y are positive integer satisfyi...

If x and y are positive integer satisfying `tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7)`, then the number of ordered pairs of (x,y) is

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

Tan^(-1)(x/y)-Tan^(-1)((x-y)/(x+y))=

tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=

If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

If x and y are positive and xygt1 , then what is tan^(-1)x+tan^(-1)y to?

tan ^(-1)((1)/(x+y))+tan ^(-1)((y)/(x^(2)+x y+1))=

If x and y are positive and xy gt 1, then what is tan^(-1)x + tan^(-1)y equal to ?