Home
Class 11
MATHS
Prove that: 2cos pi/(13) cos (9pi)/(13) ...

Prove that: `2cos` `pi/(13)` `cos` `(9pi)/(13)` `+cos` `(3pi)/(13)` `+cos` `(5pi)/(13)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that 2 cos ""pi/13 cos "" (9pi)/( 13) + cos "" (3pi)/(13) + cos " (5pi)/( 13) =0

Prove that: 2cos (pi)/(13) cos (9 pi)/(13)(3 pi)/(13)(5 pi)/(13)=0

2 cos ""(pi)/(13) cos ""(9pi)/(13) + cos ""(3pi)/(13) + cos "" (5pi)/(13) = 0.

2 cos ""pi/13 cos "" (9pi)/( 13) + cos "" (3pi)/(13) + cos " (5pi)/( 13) =0

Prove that 2 cos""(pi)/(13)cos""(9pi)/(13)+cos""(3pi)/(13)+cos""(5pi)/(13)=0

Prove that: 2cos frac (pi)(13)cos frac (9pi)(13)+cos frac (3pi)(13)+cos frac (5pi)(13)=0

The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)/(13) is

cos. (pi)/(13) + cos. (5pi)/(13) + cos. (8pi)/(13) + cos. (12pi)/(13)=