Home
Class 12
MATHS
" 4) "log(8)1+log(8)2+log(8)8=log(8)(1+2...

" 4) "log_(8)1+log_(8)2+log_(8)8=log_(8)(1+2+3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(8)a+log_(8)b=(log_(8)a)(log_(8)b) and log_(a)b=3 then the value of 'a' is

You know that 2^(1)=2,4^(1)=4,8^(1)=8 and 10^(1)=10. What do you notice about the values of log_(2)2,log_(4)4,log_(8)8 and log_(10)10 ? What can you generalise from this?

log_(4)2-log_(8)2+log_(16)2-....=

log_(4)2-log_(8)2+log_(16)2-....=

Which of the following real numbers when simplified are either terminating or rerepeating decimal 1(A)sin((3 pi)/(8))cos((3 pi)/(8))(B)log_(2)(112)(C)log_(3)2log_(4)3log_(8)4(D)27^(-log_(35)(5))

log_(3)(5+x)+log_(8)8=2^(2)

If log_(2)(log_(8)x)=log_(8)(log_(2)x), find the value of (log_(2)x)^(2)

det [[log_ (2) 512, log_ (4) 3log_ (3) 8, log_ (3) 9]] xxdet [[log_ (2) 3, log_ (8) 3log_ (3) 4, log_ (3) 4 ]] =

The value of |(log_(3)512,log_(4)3),(log_(3)8,log_(4)9)|xx|(log_(2)3,log_(8)3),(log_(3)4,log_(3)4)| is -