Home
Class 12
MATHS
If a^2x^4+b^2y^4=c^6, then the maximum ...

If `a^2x^4+b^2y^4=c^6,` then the maximum value of `x y` is (a)`(c^2)/(sqrt(a b))` (b) `(c^3)/(a b)` `(c^3)/(sqrt(2a b))` (d) `(c^3)/(2a b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(2))/(sqrt(ab)) (b) (c^(3))/(ab)(c^(3))/(sqrt(2ab)) (d) (c^(3))/(2ab)

If a^(2)x^(4)+b^(2)y^(4)=c^(6), then the maximum value of xy is (a) (c^(3))/(2ab) (b) (c^(3))/(sqrt(2ab)) (c) (c^(3))/(ab) (d) (c^(3))/(sqrt(ab))

Prove that the greatest value of xy is c^(3)/sqrt(2ab)* if a^(2)x^(4)+b^(2)y^(4)=c^(6).

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

x^(2)-c^(2)=y then num radius of Delta is (A)(y)/(sqrt(3)) (B) (c)/(sqrt(3))(C)(3y)/(4)(D)(3c)/(4)

Prove that the greatest value of x y is c^3//sqrt(2a b)dot if a^2x^4+b^4y^4=c^6dot