Home
Class 11
MATHS
If x+y=2alpha then minimum value of secx...

If `x+y=2alpha` then minimum value of `secx+secy` is `(x,y in (0,pi/2))` (a) `2cosalpha` (b) `cos2alpha` (c) `2secalpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

int(cos2x-cos2alpha)/(cosx-cosalpha)dx

If cos y=x cos(alpha-y) then (1+x^(2)-2x cos alpha)*(dy)/(dx) is (A) sin alpha (B) -sin alpha (C) cos alpha (D) -cos alpha

The value of int_0^(pi/2) sin|2x-alpha|dx, where alpha in [0,pi], is (a) 1-cos alpha (b) 1+cos alpha (c) 1 (d) cos alpha