Home
Class 12
MATHS
The function (1n (1+x))/x "in" (0,oo) is...

The function `(1n (1+x))/x "in" (0,oo)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x)=1/x is decreasing in (0,oo) .

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

The function y= f(x) = lim_(n to oo) (x^(2n)-1)/(x^(2n)+1) . Is this function same as the function g(x) = "sgn"(|x|)-1) .

The function f(x)= (x)/(1+|x|) is differentiable on (A) (0 oo) 0 oo) (B) (-oo 0) (C) (D) all the above