Home
Class 12
MATHS
If underset( x rarr 1)("Lim")( ( 1-x)(1...

If `underset( x rarr 1)("Lim")( ( 1-x)(1-x^(2))(1-x^(3))"......."(1-x^(2n)))/([(1-x) ( 1-x^(2))(1-x^(3))"........." ( 1-x^(n))]^(2))` the n show that L can be equal to
`underset( r = 1) overset( n ) (Pi)(n+r)/( r ) `

Promotional Banner

Similar Questions

Explore conceptually related problems

If n_(j_(r))=((1-xn)(1-x(n-1))(1-x^(n-2)).......(1-x^(n-r+1)))/((1-x)(1-x^2)(1-x^3)........(1-x^r)), prove that n_(j_(n-r) = n_(j_(r.))

If |x| lt 1" thn "underset(n to oo)"Lt "(1+x)(1+x^(2))(1+x^(4))....(1+x^(2n))=

lim_(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)), n in N , equals

underset(xrarr1)"lim"(x+x^(2)+x^(3)+.....+x^(n)-n)/(x-1) =

Show : underset(xrarr2)"lim"((1+x)^(n)-3^(n))/(x-2)=n.3^(n-1)

lim_(x rarr1)((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)),n in N, equals ^2nP_(n)(b)^(2n)C_(n)(c)(2n)!(d) none of these

Evaluate : underset(x to 1)(lim) ((x+x^(2) + x^(3) +……….+x^(n)) -n)/(x-1)

If lim _(xto1)(x^(1)+x^(2)+x^(3)+"..."+x^(n)-n)/(x-1)=820,(nin N) then the value of n is equal to

underset(n to oo)lim 1/n^(3) underset(k=1)overset(n)sum [k^(2)x]=