Home
Class 12
MATHS
IF xsqrt(1+y)+ysqrt(1+x)=0, show that, ...

IF `xsqrt(1+y)+ysqrt(1+x)=0`, show that,
`dy/dx=-1/(1+x)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xsqrt(1+y)+ysqrt(1+x)=0 , prove that dy/dx=(-1)/((1+x)^2

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((1+x)^2)

IF xsqrt(1+y)+ysqrt(1+x)=0 , show that, (d^2y)/(dx^2)=2/(1+x)^3 .

if x sqrt(1+y)+ysqrt(1+x)=0 prove that (dy/dx)=-1/(1+x)^2

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).