Home
Class 12
MATHS
If the differential equation of all stra...

If the differential equation of all straigh lines which are at a fixed distance of 10 units from origin is `(y-xy_1)^2=A(1+(y_1)^2)` then `sqrt(A-19)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation of all straight lines which are at a fixed distance of 10 units from the origin is (y-xy_(1))^(2) = A(1+y_(1)^(2)) then A is equal to ________.

The differential equation of all straight lines which are at a fixed distance of 10 units from the origin is (y-xy_(1))^(2) = A(1+y_(1)^(2)) then A is equal to ________.

Find the differential equation of all straight lines, which are at a unit distance from origin.

The differential equation of all straight lines which are at a constant distance p from the origin, is (a) (y+xy_1)^(2)=p^(2) (1+y_(1)^2) (b) (y-xy_(1)^(2))=p^(2) (1+y_(1))^(2) ( c ) (y-xy_(1))^(2)=p^(2) (1+y_(1)^(2)) (d) None of these

The differential equation of all straight lines which are at a constant distance p from the origin, is (a) (y+xy_1)^(2)=p^(2) (1+y_(1)^2) (b) (y-xy_(1)^(2))=p^(2) (1+y_(1))^(2) ( c ) (y-xy_(1))^(2)=p^(2) (1+y_(1)^(2)) (d) None of these

The differential equation of all straight lines which are at a constant distance p from the origin, is (a) (y+xy_1)^(2)=p^(2) (1+y_(1)^2) (b) (y-xy_(1)^(2))=p^(2) (1+y_(1))^(2) ( c ) (y-xy_(1))^(2)=p^(2) (1+y_(1)^(2)) (d) None of these

The differential equation of all straight lines which are at a constant distance p from the origin, is (a) (y+xy_1)^(2)=p^(2) (1+y_(1)^2) (b) (y-xy_(1)^(2))=p^(2) (1+y_(1))^(2) ( c ) (y-xy_(1))^(2)=p^(2) (1+y_(1)^(2)) (d) None of these

The differential equation of all straight lines which are at a constant distance p from the origin, is (a) (y+xy_1)^(2)=p^(2) (1+y_(1)^2) (b) (y-xy_(1)^(2))=p^(2) (1+y_(1))^(2) ( c ) (y-xy_(1))^(2)=p^(2) (1+y_(1)^(2)) (d) None of these

Find the equations to the straight lines which are at a distance of 1 unit from the origin and which pass through the point (3,1).