Home
Class 11
MATHS
d/dx(cosec x)=^(***)...

d/dx(cosec x)=^(***)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (d)/(dx)("cosec"^(-1)x)=(-1)/(|x|sqrt(x^(2)-1)) , where x in R-[-1,1] .

The differentiation of cotxquad with respect to x is -csc^(2)x. i.e.(d)/(dx)(cot x)=-csc^(2)x

(d)/(dx)["cosec"^(-1)((1+x^(2))/(2x))] is :

(d)/(dx)[cosec^(-1)((sqrt(2))/(x-sqrt(1-x^(2))))]=

The differentiation of cosec x with respect to xis-csc x cot x. i.e.(d)/(dx)(cosec)=-csc x cot x

d/(dx)[cosec^-1((1+x^2)/(2x))]=

(d)/(dx)(sec^(2)x*csc^(2)x)=

(d)/(dx)sqrt(sec^(2)x+cosec^(2)x)=

Find (d)/(dx) ["cosec"^(-1)x]_(x= -2)

(d)/(dx)(sec^(-1)x+"cosec"^(-1)x)=0