Home
Class 12
MATHS
ABCD is a quadrilateral whose diagonals ...

ABCD is a quadrilateral whose diagonals are AC and BD. Which one of the following is correct? (a) `vec BA + vec CD = vec AC + vec DB` (b) `vec BA + vec CD = vec BD + vec CA` (c) `vec BA + vec CD = vec AC + vec BD` (d) `vec BA+vec CD =vec BC + vec AD`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCD is a parallelogram and vec AB = vec a , vec BC= vec b then show that vec AC = vec a+ vec b and vec BD = vec b- vec a .

If A B C D is quadrilateral and E and F are the mid-points of AC and BD respectively, prove that vec A B+ vec A D + vec C B + vec C D =4 vec E Fdot

If A, B, C and D aare four points and vec AB = vec DC then vec AC + vec BD =

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec b . vec c= vec a . vec d b. vec a . vec b= vec c .vec d c. vec b . vec c+ vec a . vec d=0 d. vec adot vec b+ vec c .vec d=0

ABCD is a parallelogram and [AC], [BD]are its diagonals. Express vec AC and vec BD in terms of vec AB and vec AD .

ABCD is a parallelogram Fig. 2 (c ) .64. AC and (BD) are its diagonals. Show that (a) vec (AC) +vec (BD) =2 vec (BC) (b) vec (AC) - vec (BD) =2 vec (AB) .

ABCD is a parallelogram, with AC, BD as diagonals. Then vec AC - vec BD =

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that vec(AB)+vec(AD)+vec(CB)+vec(CD)=4vec(EF) .

ABCD is a parallelogram and [AC], [BD]are its diagonals. Express vec AB and vec AD in terms of vec AC and vec BD .