Home
Class 12
MATHS
" Prove that : "int(0)^(2a)f(x)dx=int(0)...

" Prove that : "int_(0)^(2a)f(x)dx=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

Prove that: int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot

If int_(0)^(a) f(x) dx + int_(0)^(a) f(2a-x) dx =

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx