Home
Class 13
MATHS
" The value of "lim(n rarr oo)((1^(2)+2^...

" The value of "lim_(n rarr oo)((1^(2)+2^(2)+...+n^(2))(1^(3)+2^(3)+...+n^(3))(1^(4)+2^(4)+...+n^(4)))/((1^(5)+2^(5)+...+n^(5))^(2))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)((1^(1)+2^(2)+...+n^(2))(1^(3)+2^(3)+...+n^(3))(1^(4)+2^(4)+...+n^(4)))/((1^(5)+2^(5)+...+n^(5))^(2)

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2)1^(3)+2^(3)+……….+n^(3)(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

Value of lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + 3 ^ (3) ... + n ^ (3)) / (n ^ (4))

The value of lim_(n rarr oo)(1^(2)*n+2^(2)*(n-1)+......+n^(2)*1)/(1^(3)+2^(3)+......+n^(3)) is equal to

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is