Home
Class 12
MATHS
The value of [lim(n to oo)(1+2^(4)+3^(4)...

The value of `[lim_(n to oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))-lim_(n to oo)(1+2^(3)+3^(3)+...+n^(3))/(n^(5))]` is equal to -

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1+2^(4)+3^(4)+...+n^(4))/(n^(5))

The value of lim_(n rarr oo) (1 + 2^(4) + 3^(4) +…...+n^(4))/(n^(5)) - lim_(n rarr oo) (1 + 2^(3) + 3^(3) +…...+n^(3))/(n^(5)) is :

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-