Home
Class 12
MATHS
int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2...

`int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx)) dx` का मान है

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

int(e^(7logx)-e^(6logx))/(e^(6logx)-e^(5logx))dx is:

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

The value of the integral int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx is equal to (A) x^2+c (B) x^3/3+c (C) x^2/2+c (D) none of these

Integrate the functions (e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))