Home
Class 12
MATHS
y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1...

`y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

Prove that sin^(-1)(2x.sqrt(1-x^(2)))=2cos^(-1)x,(1)/(sqrt(2))lexlt1

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

int_(-1)^(1)(sin^(-1)""(x)/(sqrt(1-x^(2)))+Cos^(-1)(x)/(sqrt(1-x^(2))))dx=

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)