Home
Class 12
MATHS
[" iv) "tan^(-1)x+cot^(-1)(x+1)],[[" a) ...

[" iv) "tan^(-1)x+cot^(-1)(x+1)],[[" a) "tan^(-1)(x^(2)+1)," b) "tan^(-1)(x^(2)-x)," c) "tan^(-1)(x+1)," d) "tan^(-1)(x^(2)+x+1)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^(-1)x+cot^(-1)(x+1) = tan ^(-1) (1+x+x^(2))

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

int(tan^(-1)x cot^(-1)x)/(1+x^(2))dx

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)