Home
Class 12
MATHS
If y=log[x+sqrt(x^2+a^2)], show that (x^...

If `y=log[x+sqrt(x^2+a^2)]`, show that `(x^2+a^2)(d^2y)/(dx^2)+x(dy)/(dx)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log[x+sqrt(x^2+a^2)\ ] , show that (x^2+a^2)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log{x+ sqrt( x^2+a^2 )} , prove that: (x^2+a^2)(d^2y)/(dx^2)+x(dy)/(dx)=0 .

If y={log(x+sqrt(x^2+1))}^2 , show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2 .

If y=log[x+sqrt(x^(2)+a^(2))], show that ((x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log\ [x+sqrt(x^2+1)] , prove that (x^2+1)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y={"log"(x+sqrt(x^2+1))}^2,"show that"(1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2.

If y= log(x+ sqrt ( x^2 + a^2 ) ), show that ( x^2 + a^2 )( d^2 y)/(d x^2 ) + x(dy/dx) = 0

If y=[log(x+sqrt(x^2+1))]^2 , show that, (1+x^2)(d^2y)/(dx^2)+xdy/dx=2