Home
Class 12
MATHS
(dy)/(dx) ज्ञात कीजिए - x=e^(t)(sint+...

`(dy)/(dx)` ज्ञात कीजिए -
`x=e^(t)(sint+cost),y=e^(t)(sint-cost)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx , when : x=e^(t)(sint+cost)andy=e^(t)(sint-cost) .

Find dy/dx at t = pi/4 when x e^(-t) (sin t + cos t ) and y = e^-t (sin t - cost)

Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]] is invertible. (1) only id t=pi/2 (2) only y=pi (3) t in R (4) t !in R

Find dy/dx when x = e^(t-sint), y = e^(t + cost)

If x=ae^(t)(sint+cost) and y=ae^(t)(sint-cost) , then prove that (dy)/(dx)=(x+y)/(x-y) .

Find (dy)/(dx) , if x=a(t-sint), y=a(1-cost)at t=(pi)/2

int e^t sint dt

Find (dy)/(dx) , when x=a(t+sint) and y=a(1-cost).

Find (dy)/(dx) , when x=(logt+cost),y=(e^(t)+sint)