Home
Class 12
MATHS
यदि y=secx तो सिद्ध कीजिए कि (d^(2)y)/...

यदि `y=secx` तो सिद्ध कीजिए कि
`(d^(2)y)/(dx^(2))=secx(sec^(2)x+tan^(2)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sec x -tan x ,then (d^(2)y)/(dx^(2)) =

int (secx)/((sec x+ tan x)^(2))dx=

x (dy)/(dx) - y = 2x ^(2) secx

(dy)/(dx)+(y)/(2)sec x=(tan x)/(2y)

If y=tanx+secx , then prove that (d^(2)y)/(dx^(2))=(cosx)/((1-sinx)^(2))

If y=x^(3)+tan x, show that (d^(2)y)/(dx^(2))=6x+2sec^(2)tan x

If y=(tan x+secx) , prove that (d^(2)y)/(dx^(2))=(cosx)/((1-sinx)^(2))

If y=secx+tanx then prove that (d^2y)/(dx^(2))=cosx/((1-sinx)^(2)) .